
www.manaraa.com

Wayne State University
DigitalCommons@WayneState

Wayne State University Theses

1-1-2013

Synergistically Coupling Of Solid State Drives And
Hard Disks For Qos-Aware Virtual Memory
Ke Liu
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Liu, Ke, "Synergistically Coupling Of Solid State Drives And Hard Disks For Qos-Aware Virtual Memory" (2013). Wayne State
University Theses. Paper 236.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/236?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

SYNERGISTICALLY COUPLING OF SOLID STATE DRIVES AND
HARD DISKS FOR QOS-AWARE VIRTUAL MEMORY

by

KE LIU

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2013

MAJOR: COMPUTER
ENGINEERING

Approved by:

Advisor Date

www.manaraa.com

ACKNOWLEDGEMENTS

The two years study at Wayne State University is very interesting and full of

challenges. This thesis could not be achieved without help from many people in my

life. I am very grateful to my advisor, Dr. Song Jiang, for his guidance, support,

encouragement all the time. His guidance and extensive knowledge help me get

through all the hard times of this work. Thanks to Dr. Kei Davis, who provided

me an internship and a fantastic trip at Los Alamos National Laboratory, as his

insightful comments on my work help it improved a lot. I would also like to thank

the rest of my thesis committee, Prof. Cheng-zhong Xu and Prof. Weisong Shi, for

their encouragement, suggestions, and hard questions to improve this work. I am

very thankful to my friends Dr. Xuechen Zhang, Yuehai Xu, Jianqiang Ou, Dr. Jia

Rao, Xiangping Bu, Kun Wang, Yudi Wei, who made weekly discussion with me and

helped me a lot in daily life.

Lastly, I would like to thank my entire family, for their understanding, support

and love for my over twenty years of study.

ii

www.manaraa.com

TABLE OF CONTENTS

Acknowledgements . ii

List of Figures . v

List of Tables . vii

Chapter 1 Introduction . 1

1.1 Using Solid State Drive as Swapping Device 1

1.2 Thesis Contributions . 3

1.3 Thesis Organization . 4

Chapter 2 Background on Virtual Memory 5

2.1 Virtual Memory Management . 5

2.1.1 Memory Segmentation . 7

2.1.2 Paging . 9

2.2 Paged Virtual Memory . 10

2.2.1 Page Replacement . 11

2.2.2 Page Management in the Linux Kernel 13

2.3 Swapping . 14

2.3.1 Swap Area . 15

2.3.2 Page Slot Identifier . 18

2.3.3 Swap Cache . 19

Chapter 3 Related Work . 21

3.1 Characteristics of Hard Disks . 21

3.2 Linux Swap Management for Hard Disks 23

3.3 Characteristics of SSD . 25

iii

www.manaraa.com

3.4 Related Work on Reducing Writes to SSD 29

Chapter 4 Design and Implementation 35

4.1 Integration of Locality . 35

4.2 Evaluation of Spatial Locality of Page Sequences 37

4.3 Scheduling Page Swapping . 40

4.4 Building QoS Assurance into HybridSwap 42

Chapter 5 Evaluation and Analysis . 44

5.1 Experimental Setup . 44

5.2 Benchmarks . 46

5.3 Reduction of SSD Writes . 47

5.4 Effectiveness of Sequence-based Prefetching 50

5.5 Effect of Memory Size . 51

5.6 Insights into HybridSwap Performance 52

5.7 Multiple-program Concurrency . 54

5.8 Bounding the Page Fault Penalty . 55

5.9 Runtime Overhead Analysis . 58

Chapter 6 Conclusions and Future Work 60

6.1 Contributions . 60

6.2 Limitations and Future Work . 61

References . 62

Abstract . 68

Autobiographical Statement . 70

iv

www.manaraa.com

LIST OF FIGURES

Figure 2.1 An example of program address space in segmentation. 7

Figure 2.2 An example of program address space in paging. 9

Figure 4.1 An example of grouping pages at the tail of inactive list. 37

Figure 4.2 Illustration of SSD Segment and Disk Segment. 41

Figure 5.1 An illustration of HybridSwap configuration. 45

Figure 5.2 An illustration of SSD-Swap configuration. 45

Figure 5.3 An illustration of RAID-Swap configuration. 46

Figure 5.4 Cumulative distributions of sequence sizes for the Image and CC

benchmarks. 50

Figure 5.5 Number of major faults when running the CC benchmark with

SSD-Swap, RAID-Swap, and HybridSwap. For SSD-Swap and

RAID-Swap we use the Linux default read-ahead policy. 51

Figure 5.6 Memcached throughput in terms of average number of queries

served per second with different memory sizes and different swap-

ping schemes. 52

Figure 5.7 Disk addresses, in terms LBNs of data access on the hard disk in

a sampled execution period with HybridSwap (a) and with RAID-

Swap (b). 54

Figure 5.8 Major faults (a) and total I/O time (b) spent on the swapping

in the running of the Matrix benchmark with varying degrees of

concurrency. 56

v

www.manaraa.com

Figure 5.9 Running three instances of the Image benchmark with HybridSwap

when a QoS requirement in terms of a bound on the ratio of the

aggregate page fault penalty and (a) run time is not specified, or

(b) is specified. 57

Figure 5.10 Run times of the Image, CC, and Matrix benchmarks with and

without sequences-related operations invoked. 59

vi

www.manaraa.com

LIST OF TABLES

Table 5.1 Capacities and sequential/random read/write throughput of the

two SSDs and the hard disk. The measurements are for 4KB re-

quests. Random access throughput indicates access latency, which

is relatively very large for the hard disk. In contrast, the hard

disk’s sequential throughput is not much lower than the SSDs’. . 47

Table 5.2 Number of writes to the SSD with and without use of the hard disk

managed by HybridSwap. The number of concurrent instances is

given in parentheses. 48

Table 5.3 Performance of the benchmarks when either SSD-Swap or Hy-

bridSwap is used. Memcached’s performance is in terms of through-

put (packets/s), and the other benchmarks use run time (s) as the

performance metric. 49

Table 5.4 Run time/number of major faults during the executions of the

Image benchmark with different swapping schemes and different

types of SSDs. 53

vii

www.manaraa.com

1

Chapter 1

Introduction

Normally, desktops and laptops are statically configured with fixed size of dynamic

random-access memory (DRAM). Although the price of DRAM per Gigabytes (GB)

becomes increasingly lower and the size of DRAM on each desktop and laptop machine

becomes larger and larger, the memory needs of applications grow dramatically too.

The growing speed of memory demands for applications running on desktops and

laptops is much faster than the increasing speed of DRAM size on desktops and

laptops. When applications are demanding more memory than DRAM size, system

would come into swapping. Typically, hard disks would be used as swapping devices

and user experience might be deteriorated during swapping.

1.1 Using Solid State Drive as Swapping Device

Given the large performance gap between DRAM (memory) and hard disk, flash

memory (flash)—with access latency much less than hard disk, with performance

much less sensitive to random access than hard disk and with performance much bet-

ter to sequential access than hard disk —has been widely employed to accelerate access

of data normally stored on hard disk, or by itself to provide a fast storage system.

Another use of flash is as an extension of memory, so that working sets of memory-

intensive programs can overflow into the additional memory space [39, 12, 28, 33, 42].

This latter application is motivated by the exponential cost of DRAM as a function

of density (e.g., ∼$10/GB for 2GB DIMM, ∼$200/GB for 8GB DIMM, and hundreds

or even thousands of dollars per GB for DIMM over 64GB) and its high power con-

sumption. In contrast, flash is much less expensive, has much greater density, and is

much more energy efficient both in terms of energy consumption and needed cooling.

www.manaraa.com

2

A typical approach for inclusion of flash in the memory system is to use it as swap

space and map virtual memory onto it [39, 12, 28]. Much effort has been made to

address the particular properties of flash for use in this context, such as access at page

granularity, the write-before-erasure requirement, asymmetric read and write perfor-

mance, and limited write cycles. The most challenging issue is flash’s endurance—the

limited number of write-erase cycles each flash block can perform before failure. A

block of MLC (multi-level cell) NAND flash—the less expensive, higher density, and

more widely used type—may only be erased and rewritten approximate 5000-10,000

times before it has unacceptably high bit error rates [23, 32]. Though SLC (single-

level cell) flash can support a higher erasure limit (around 100,000) per flash block,

increasing flash density can reduce this limit [24].

When the flash-based solid state drive is used for file storage, the limited number

of write cycles that flash can endure may not be a significant issue because frequently

accessed data is usually buffered in memory. However, if solid state drive is used

as a memory extension with memory-intensive applications, the write rate to the

solid state drive can be much higher and solid state drive longevity can be a serious

concern. For example, for a program writing to its working set on a 64GB solid state

drive of MLC flash at a sustained rate of 128MB/s, the slid state drive can become

unreliable after about two months. Considering the write-amplification effect due to

garbage collection at the flash translation layer (FTL), the lifetime could be reduced

by a factor of up to 1000 [26]. To improve solid state drive’s lifetime when used as

swap space for processes’ virtual memory, researchers have tried to reduce write traffic

to solid state drive by using techniques such as minimizing the replacement of dirty

pages [39], detecting pages containing all zero bytes to avoid swapping them [39], and

managing swap space at the granularity of custom objects [12]. In these prior works,

when solid state drive is proposed to serve as swap space, the conventional host, hard

www.manaraa.com

3

disk, is excluded from consideration for use for the same purpose. This is in contrast

to the scenario where solid state drive is used as file storage, wherein hard disk is

often also used to provide large capacity and to reduce cost.

1.2 Thesis Contributions

In this thesis, we propose a page-swapping management scheme, HybridSwap, to

reduce solid state drive writes in its use as a memory extension. In this scheme, we

track page access patterns to identify pages of strong spatial locality to form page

sequences and accordingly determine the destinations of pages to be swapped out. In

this work, we make the following contributions.

• We propose to introduce the hard disk into the use of solid state drive for mem-

ory extension. We show that in representative memory-intensive applications,

there is substantial sequential access that warrants the use of hard disk to sig-

nificantly reduce solid state drive writes without significant performance loss

compared to solid state drive-only swapping.

• We develop an efficient algorithm to record memory access history and to iden-

tify page access sequences and evaluate their locality. Swapping destinations

are accordingly determined for the sequences to ensure that both high disk

throughput and low solid state drive latency are exploited while high latency is

avoided or hidden.

• We build a QoS-assurance mechanism into HybridSwap to demonstrate the

flexibility of the system in bounding the performance penalty due to swapping.

It allows users to specify a bound on the program stall time due to page faults

as a percentage of the program’s total run time.

www.manaraa.com

4

• We have implemented the hybrid swapping system in the Linux kernel and

have conducted extensive evaluation using representative benchmarks including

key-value store for in-memory caching, image processing, and scientific compu-

tations. The results show that HybridSwap can reduce solid state drive swap-

ping writes by 40% with performance comparable to that of using a solid state

drive-only solution.

1.3 Thesis Organization

The rest of the dissertation is organized as follows:

Chapter 2 describes how virtual memory, especially paging virtual memory and

swapping, works on modern computer architecture.

Chapter 3 first gives an overview about characteristics of hard disks and how

existing Linux operating system making use of these characteristics for hard disks as

its swapping device. Then we present the characteristics of solid state drives and the

existing work on incorporating solid state drives for virtual memory.

Chapter 4 describes the design and implementation of HybridSwap which takes

spatial and temporal locality into considerations for selecting pages to be swapped to

an assigned destination (hard disks or solid state drives) with low overhead and high

efficiency. Also, we take QoS-assurance mechanism into our design.

Chapter 5 describes the experimental setup, evaluates HybridSwap with repre-

sentative benchmarks and analyzes the experiment results which showed that Hybrid

could save writes to solid state drives without compromising the performance.

Chapter 6 summarizes our contributions and limitations in this work and propose

directions for future work.

www.manaraa.com

5

Chapter 2

Background on Virtual Memory

This chapter first introduces virtual memory technology, the segmented virtual

memory, the paged virtual memory and we compare the advantages and disadvan-

tages of paged virtual memory technology with segmented virtual memory technology.

After that, we introduce the background of swapping.

2.1 Virtual Memory Management

Virtual memory is a modern memory management technique which allows pro-

grams load part of its data and code into the memory first, and then requesting other

data in on demand fashion. This technique makes programmers have the illusion

that they have a wide range of contiguous addressable memory space, virtual mem-

ory, which can be read/write directly. With the help of virtual memory, programmers

do not have to worry about memory hierarchy. Programmers do not have to modify

the programs even when the capacity of memory changes or the content of a pro-

gram module changes or the network configuration changes. Virtual memory has the

following advantages [17]:

• With the advent of virtual memory, programmers don’t have to worry about the

overlay problems which happen at when the an application needs more memory

than the computing system currently has. It also helps solve the issues of parti-

tioning and relocation which happen at when it comes with multiprogramming.

Computer algorithms can be designed without considerations of the parameters

of the memory configuration.

• Virtual memory brings very good protection to the operating system. A process

can only access a limited number of objects which is defined in its protection

www.manaraa.com

6

domain. The operating system will enforce a process can only reference to a

memory region which is stated in its protection domain. This check could be

done by hardware easily and it is very efficient.

• With the help of virtual memory, it is possible for programmers to combine

separately compiled, sharable software components into their programs without

worrying about arrangements other than interfaces, and without linking the

software components into an address space manually.

• Virtual memory shares the same idea of object oriented programming. With vir-

tual memory, program objects can be provided in on demand fashion. They are

able to be separately designed, compiled and freely shared and resued through-

out a distributed system [16, 41].

• Virtual memory is very helpful for parallel computation among machines and

multicore computers. Virtual memory help reduce communication costs in dis-

tributed system. If programmers don’t have a common address space, program

data can only be passed through message passing. For message operations, the

same data need be copied at least three times: first from the sender’s process lo-

cal memory to a local system buffer, second copy the data from sender’s system

buffer to a receiver’s system buffer by the network, third copy the data from

the receiver’s system buffer to receiver’s process local memory. With virtual

memory, communication costs can be reduced by two-thirds as it only needs

copy the data when the data is referenced.

The predictions that one day, main memory would be large enough to hold all

the data has never come true and there is little hope and reason to believe they

ever will. For scientific comptutation, it is common for them to have Tera Bytes for

www.manaraa.com

7

computation. For personal computers, all applications’s demand grow exponentially.

Virtual memory is mainly designed as an extension of primary memory designed

for multiple programs run concurrently. Memory segmentation and paging are two

main techniques for virtual memory management. In the following sections, we will

introduce about memory segmentation and paging.

2.1.1 Memory Segmentation

Code

Free

Heap

Free

Stack

Figure 2.1: An example of program address space in segmentation.

Memory segmentation divides the virtual address spaces into several variable-

length chunk of memory and the size of a memory segment can be even as small

as one byte. Typically, as shown in Figure 2.1, a program address space is divided

into several segments such as code segment, heap segment, stack segment. These

segmentations represent a natural partition of a program, so this partition is viable

to programmers [19, 43].

Each segment has the following attributes, a base address, a size and a set of

permission bits. The permission bits specify which kind of access can be made by

the program such as read, write, execute and etc. A virtrual address consists of a

segment number and an offset. A process can only access an address within the range

www.manaraa.com

8

of the segment specified by the virtual address and this access should be allowed

by the permissions bits. Otherwise, an exception like a segmentation fault would

be generated. A memory management unit (MMU) is responsible for translating

a virtual address into physical address, and performens permission checks for the

address to make sure the address has the permission to be assessed.

Also, a segment has a flag which indicates whether the segment is in the main

memory or not. If the process wants to access a segment that is not in the main

memory, an exception would be raised and the operating system would try to read

the content from the secondary storage such as hard disks, solid state drives, and etc.

Memory segmentation technique has a lot of advantages. For example, segmenta-

tion is a very nice abstraction for sharing data, makes it convenient to share memory

between processes with appropriate protections. Each segment can move indepen-

dently and one segment move into secondary storage will not interfere with other

segments. However, it has the following disadvantages. Segmentation might make

serious fragmentation in the memory and makes the memory management too com-

plicated as the size of each chunk is different. Also, as the whole segment must be

present in the main memory or in the secondary storage together, the memory uti-

lization might be very inefficient. For example, there might be only a very small

fraction of data in a very large segment needs to be accessed frequently. It is a huge

waste of memory to keep a large segment in the memory just in order to read only a

samll fraction of it and to read the whole segment into main memory from the sec-

ondary storage in order to read such a small fraction of data is very low efficient and

user experience might be seriously deteriorated. To cope with these issues, modern

computer architectures usually use paging in virtual memory management.

www.manaraa.com

9

2.1.2 Paging

Paging is a memory management technique used in modern computer operating

systems by which a computer can move data between secondary storage and main

memory. The smallest unit of data in paging is a page, a fixed size contiguous chunk

of virtual memory addresses. It is also the smallest unit of data move between main

memory and secondary storage, such as a solid state drive, a hard disk drive and etc.

The size of a page depends on computer processor architecture. Typically, the size of

a page in a computer system is the same, for example, 4KB. However, page sizes in

a computer may have several different page sizes, such as 8KB [43, 4].

E

D

B

E

B

D

C

A

D

A

Program X

Main memory

Figure 2.2: An example of program address space in paging.

Compared with memory segmentation, the most advantage of paging is that it

allows the physical memory address allocated to a process not necessarily to be con-

tiguous. For example, in Figure 2.2, a program space is devided into five different

pages and these pages are mapped into main memory in pages, not necessarily con-

tiguous. In memory segmentation, each segment needs to be physically contiguous

on the physical memory. This makes memory segmentation have a serious memory

fragmentation problem. Also, a fixed-size for each page makes memory management

www.manaraa.com

10

easier compared with memory segmentation that has a variable length for each seg-

ment.

Many modern operating systems adopt paging for its memory management. As

memory segmentation provides a good security protection while paging provides high

memory management efficiency, some computer architecture use paging and memory

segmentation together. Such a system divides the programming address space into

different segments first, and then divide each segment into equal sized pages. Systems

with such a design are typically paging predominant, just using memory segmentation

for memory protection, such as IBM System/38, Multics [9]. In modern general

purpose operating systems all adopt paging and we will just concentrate on paging

in our following discussion.

2.2 Paged Virtual Memory

Page table is a data structure that is used to translate from the virtual addresses

referenced by the processes to the physical addresses used by hardware. It has 2-level

or 3-level. In a page table, each entry named Page Table Entry (PTE), represents

a mapping between a virtual address and physical address. Each entry in the page

table has a flag indicating whether the corresponding page is in the physical memory

or not.

A computer system can have only one page table for the whole system or each

different process has its own page table. If there is only one page table for the whole

system, then different processes running at the same time should not use the same

virtual address ranges, each one should use a different virtual address ranges. If each

process has its own page table, then their virtual address ranges could be overlapped,

as the same virtual address of different processes could be redirected to different

physical addresses.

www.manaraa.com

11

When a process try to access a virtual address, it first needs to determine the

physical address and this is typically done by hardware like memory management unit.

If the requested page is in the main memory, the process can simply continue execute.

Otherwise, a page fault exception is raised and the operating system needs to select

an empty page in the main memory to hold data reading from the secondary storage.

Then operating system will load the requested data from the secondary storage to

the prepared empty page and update the corresponding page table entry. After this,

the operating system will return control to the process, retrying the instruction that

caused the page fault.

If there is enough physical memory holding all processes data, there is no problem

in selecting an empty page for loading data. However, if there are not enough pages

to store all data or the empty pages is below some threshold, some pages should be

selected to go to the secondary storage. If the data in the page belongs to some files

on the secondary storage, and the data is different from the version on the secondary

storage, for example, the data has been modified since it is read into memory or

writing new data into a new file, then the data on this page needs first write onto

the secondary storage before free this page. If a program wants to access a paged

out page again, then a page fault would be generated to read the requested data into

memory again.

2.2.1 Page Replacement

Page replacement algorithms are used to select the memory pages to paging out

or swapping out to secondary storage such as hard disks, solid state drives when the

number of empty memory page is less than a threshold or there is no empty memory

page in the computer system. As reading/writing page from/to secondary storage

needs a lot of I/O stall time and read/write performance on secondary storage is

orders of magnitude slower than CPU (Central Processing Unit), if paging in/out

www.manaraa.com

12

happens too much, user experience would be seriously deteriorated. If the page

replacement algorithm is not well designed, the computer system might come into a

problem named thrashing.

Thrashing, when a computer does not have enough main memory and main mem-

ory could not efficiently hold programs’ working set, the computer system might come

into a state which the computer system has a high rate of writing pages into swap-

ping device and reading pages from it. This leads to very low CPU utilization and

the throughput, responsiveness and latency of a computer system might degrade by

multiple orders of magnitude. Hence user experience is seriously deteriorated. Even

if we simply enlarge the main memory, the number of page fault generated during

programs running might not necessarily reduced. This phenomenon is called Belady’s

anomaly [10].

Hence, an efficient page replacement algorithm must be chosen for the computer

system. A simple metric for a page replacement algorithm is the less time needed

waiting for paged in, the better the algorithm is. Typically, a page replacement

algorithm uses a limited set of information to the pages provided the hardware to

select which pages to swap out to minimize the total I/O stall time during programs

running. As most of the time, it is impossible to know which pages are going to be

accessed for a computer system running many different applications. Usually, a page

replacement algorithm is an online algorithm and the computation and memory cost

of the page replacement itself should be low.

Many computer systems adopt an approximation of the least recently used (LRU)

algorithm, such as LIRS [29], 2Q [30]. Some replacement algorithms add user-level

hints to improve efficiency, such as adding application controlled file caching, applica-

tion informed prefetching and caching schemes. Some replacement algorithms record

and utilize history information, such as LRFU which combines recency and frequency

www.manaraa.com

13

information of a block together with LRU. Some replacement algorithms are based

on the detection and adaptation of access regularities detections, different schemes

will appllied according to reference patterns, such as EELRU [31].

2.2.2 Page Management in the Linux Kernel

The Linux kernel [11, 19] needs to track each page frame’s current status, such

as whether a page is free or not, whether a page is in the main memory or on the

secondary storage right now. Also, the Linux kernel needs to determine what’s the

data in a page frame, such as data of a user mode process, data of kernel data

structure, cached data of a software cache and buffered data for a device. All such

state information is stored in a data structure called page in the Linux kernel.

The Linux kernel uses an LRU approximation algorithm, 2Q, for page manage-

ment. This is not a strictly speaking LRU algorithm as strict LRU is difficult to

implement and costs would be high. There two type of lists in the Linux kernel,

active list and inactive list. The active list contains pages that are currently in the

main memory and recently haven been referenced. The inactive list contains pages

that are currently in the main memory too but are relatively not as active as pages

in the active list, that is, they have been referenced in a short time period recently.

These pages contain useful data for the system but might be get out of the main

memory at any time. There is another list named free list, which contains empty

pages. When the operating system needs to allocate an empty page for the system, it

will search the free list first. When the number of empty pages in the free list is lower

than a threshold, the system would try to free some pages from the pages that are

containing useful data currently. The system will select some pages from the inactive

list to page. If the selected page contains data but the data has the same version

as the file it comes from, the content of the page would be just discarded and the

page enters into free list. If the selected page contains data but different from the

www.manaraa.com

14

content it comes from, the content of the page needs to written into the file first. If

the page contains data belonging to a process and do not belong to any file on the

secondary storage system, this kind of pages named anonymous page, and it must

be saved for future programs running and it will written into s special device name

swapping device. After this, the page would be added into the free list for future use.

When a new page is reading into the system, it will first put into the end of the

inactive list. If this page is referenced by the system in a short time, this page will

be moved to the tail of the active list. If a page in the active list is referenced in a

short time, it will be moved to the head of the active list. If a page in the active list

has not been referenced for a long time, it will be moved to the head of the inactive

list. The operating system selects pages for paging out from the tail of the inactive

list.

2.3 Swapping

As mentioned in last section, anonymous pages belong to no file on the secondary

storage and they will be written into a special device named swapping device. More

specifically, anonymous pages include pages:

• Pages that are belonging to the anonymous memory mapping part of a process,

such as stack, heap.

• Pages that are belonging to the private memory mapping part of a process.

• Pages that are belonging to an IPC shared memory part.

These pages are private to processes and they can not just be discarded to read

from a file later. Instead, they need to be saved into swapping devices.

The existence of swapping devices is very helpful for computer systems.

www.manaraa.com

15

First, it enlarges the amount of memory to the computer system. Without swap-

ping, it is impossible for a program running on a computer system with physical

memory less than it needs during running. With the help of virtual memory and

swapping, a large program is able to run even if just partial of its data is in the main

memory.

Second, a large number of pages are only useful for a process initialization and

system initialization. After that, they will never be used. Putting these kinds of

pages onto the secdondary device will not compromise the system performance but

also enlarge the available memory for all processes. It is better to put them on the

secdondary device than keeping them in the main memory but never used in the

future.

However, swapping has a major flaw. It needs to read/write from/to a secondary

storage. The access time of a secondary storage is much slower than that of main

memory. If a process involves a lot of swapping during its running, it will run much

slower than its running in main memory and its response to users would be very poor.

2.3.1 Swap Area

The pages that are swapping out to the swapping device are saved in an area

named swapping area. Swapping area can be a special disk partition or a large special

file on a secondary device. Users can define several swapping area in their system,

the maximum number of swapping area is confined by a macro MAX SWAPFILES

(defined in include/linux/swap.h), typically setting to 32. Spreading a large swapping

space on multiple swapping devices that could run concurrently could help improve

system performance when swapping is needed.

On each swap area, there are sequences of page slots which are used to store the

swapped out page. Typically, the size of a page slot is the same size as the page in

the main memory, 4K bytes. A page on the swapping device maps to a page from the

www.manaraa.com

16

system. On the first page slot of a swap area, there stores some information about the

swapping area persistently even if the computer system is shutdown. Those informa-

tion is defined by the swap header union (defined in include/linux/swap.h) consists

of two structures, info and magic. The info structure part includes information about

partition information, disk labels information, swapping algorithm chosen by the sys-

tem, the last page slot that is effectively usable on the swapping device, number of

bad page slots on the swapping device, padding information and so on. The magic

structure part includes a character string to unambiguously indicate the swapping

area and a magic string ”SWAPSPACE2” at the end of the first page slot to indicate

the end of the first page.

The data stored on the swapping device are only meaningful when the system is

on. When the system is turned off, or the swapping device is switched off, or the

process that own the data is killed, the corresponding data on the swapping device is

no longer useful and can be simply discarded.

When a swap area is created, those fields in the first page slot described above

will be initialized. Because it is common for a secondary device has some defective

blocks, the program will search all the bad page slots to calculate bad page slots in

the assigned area.

In each swap area, there is one or more swap extents. Each swap extent is described

by a data structure named swap extent. Actually, each extent is a group of adjacent

pages on the disk. Thus, the swap extent structure contains the index of the first

page of the swap extent in the swap area, the number of pages in the extent, the

starting sector number of disk containg the swap extent. For a swap area consists of

a disk partition, only one swap extent. For a swap area consists of a regular swap

file, there might be several swap extents as the file system might not create the swap

area on only one contiguous area on the disk.

www.manaraa.com

17

When more than one swap area is configured on the computer system, the system

administrator has two choices. If all the swap area has the same or almost the same

I/O performance, the system administrator could set all the swap areas have the

same priority. In this case, the swapping out pages will be spread equally into each

device cyclically without worrying about putting too much data on one swap area

where might be the bottleneck in the future. Or, if the I/O performance of the swap

areas has a huge difference, for example, if one swap area is on a hard disk while the

other one is on the solid state drive, the I/O performance of solid state drive typically

would be much better than hard disk. In this case, the system administrator could

set the solid state drive has a higher priority than the hard disk has. When searching

for a free page slot, the system will first search the swap area that has the highest

priority. If no free page slot is found, the system will continue to search on the swap

area has a lower priority. If no free page found on all the swap area, then the system

will crash for outing of memory. But typically, this would not happen, as we can

usually set the swap area of huge size, tens of GB.

Each swap area uses a data structure named swap info struct (defined in in-

clude/linux/swap.h) to describe the swap area information. This data structure in-

cludes information about the number of swap extents on this swap area, a linked lists

of swap extents, descriptor of blocking device which contains this swap area, priority

of this swap area, number of pages slots in this swap area and so on.

The swap area also contains a pointer which points to an array of page slots of

a maximum size MAX SWAPFILES (usually is 32768) on this swap area. There is

a counter on the page slot to indicate how many processes using that page slot. If

the counter on a page slot is zero, this page slot is free, available for swapping. If the

counter on a page slot is large than zero and less than a macro SWAP MAP MAX

(typically equal to 32767), this page slot has been shared by the value of counter

www.manaraa.com

18

processes. If the value comes to SWAP MAP MAX, then the page slot will store the

content permanently and never be changed any more. If the value of the counter on

a page is SWAP MAP BAD, then the page is defective and never will be used.

2.3.2 Page Slot Identifier

When a page is swapping out, its corresponding address will be written into its

corresponding page table entry so that the page could be found quickly when used

next time. A swapped out page can be unambiguous determined by the swap area

index in the swap area array and the page slot index in the swap area. As the first page

of a swap area is always reserved to store some swap area configuration information,

the first available page slot can be start at the first non-defective page slot in the

page area which might be as small as 1.

The page slot identifier consists of the following information, page slot index and

swap area index. The least significant bit of this data structure is always 0, which

is also the place of the present flag in the page table entry. With this design, the

operating system can always figure our whether a page is in the main memory or not

in O(1) time. There three possible cases to identify the value in a page table entry:

• The value of the page entry is 0. This means the corresponding page does not

belong to the process address space at all, or the corresponding page has not

been assigned to the process yet.

• Least significant bit is 0 but the value of the entry is not 0. This means that

the corresponding page is swapped out.

• Least significant bit is not 0. This means that the corresponding page is in the

main memory.

www.manaraa.com

19

The number of bits that is available for identifying a page slot determines the

maximum size of a swap area. Usually, there is 24 bits available for identifying a page

slot on the swap area on the 80*86 computer architecture. Thus, the maximum size

of a swap area on a 80*86 computer is 64GB, typically large enough for personal uses.

2.3.3 Swap Cache

With the help of swap cache, many difficult synchronization problems, such as,

multiple processes might try to read in the same swapped out page at the same time, a

process that might read in a page that is being swapped out by the oeprating system,

has been solved.

The key design is that every process must check whether the swap cache contain

the affected page before they start to read in a swapped out page or swap out a page.

With this design, all concurrent swap operations performed on the same page will

always affect the same page frame.

For example, consider the case that two processes sharing the same swap page and

all tries to read in this swapped out page at concurrently. The first process first tries

to read in the swapped out page and the system will start the swap in operation. For

a swap in operation, first, it will check whether the corresponding page frame is in

the swap cache or not. If the page is included in the page cache, then the system will

simply use the page frame descriptor and put the process into sleep until the read in

data I/O operation has already been completed. If the page frame is not included in

the swap cache, the kernel system will allocate a new page frame and put it into the

swap cache. Then, the system will start to read in the page from the swap devices.

Meanwhile, if the second process begin to issue swap in operation to read in this

shared page. The system will first check swap cache too. As right now, this shared

page is already included in the swap cache, the system will simply put the second

process into sleep until the read in I/O operation finished.

www.manaraa.com

20

Before a page actually is actually swapped onto the swapping device, every page

needs to be first put into the swap cache. With this design, it solves the problem of

multiple processes try to swap in and swap out the same page concurrently beautifully.

Let us consider the case when two processes share one page frame. At first, this shared

page has two owners and the reference to this page frame is put into the page table

entries of both processes. When the kernel system choosees this page for swapping

out, this page will be put into swap cache first. Right now, this shared page has three

owners, while only the page slot in the swap cache is referenced solely by the swap

cache. Then, the kernel system will try to remove the ownership of the two processes

to make the swap cache as the only owner for this page. If this operation is completed,

swap cache becomes the only owner of this page and the kernel system will remove

the page from the swap cache and put the page frame into the free page list. Let us

consider the case that while the page is being swapped out to the swapping device,

one process tries to read this page. Thus, one page fault is raised. The page fault

hander finds out that the desired page frame is in the swap cache and it will update

its page table entry back to its physical address of the process issuing the read in

operation.

Simply speaking, swap cache can be viewed as a transit center contain the page

descriptors of the swapping pages that are currently swapped in or swapped out.

When the swap I/O operation is completed, the page frame descriptor will be removed

from the swap cache.

www.manaraa.com

21

Chapter 3

Related Work

This chapter talks about the characteristics of hard disks and solid state drives,

how Linux operating taking the characteristics of hard disks into consideration for its

swapping and the existing work on making use of solid state drives for swapping.

3.1 Characteristics of Hard Disks

Hard disk has been used as the main storage medium for couples of years. It is

the main storage medium for computing servers and personal computers. More than

200 companies in the world are producing hard disks, and the main manufactures are

Toshiba, Seagate and Western Digital [3].

A hard disk drive, essentially consists of a spindle holding a couple of platters,

is mainly used for storing and retrieving information on it. A hard disk drive could

retain the data on it even when power if off. A platter is a flat circular disk made from

non-magnetic materials covered with magnetic materials which record data on it. On

each platter, there are thousands of concentric circles named tracks. Each track is

divided into thousands of sections. A sector is the minimum data storage unit on hard

disks and each sector stores 512 bytes of data. Each sector might have a different

length with the same size. The density of sectors on the tracks decides the capacity

of a hard disk drive. As the outer track is longer than inner track, the outer track

might have much more number of sectors than inner sector has or each track has the

same number of sectors which are depends on manufacturers’ implementation. There

are a lot of read/write heads on an actuator where read/write information from/to

disk tracks. The platter spins at an extremely high speed, such as 7200 Rotations Per

Minute (RPM), 15000 RPM, which has the effect of presenting the data to disk head

www.manaraa.com

22

at a terrific speed. That’s why hard disk drives have a very high efficiency under

sequential reads or writes. However, for random read/write access, the disk head

needs to move from one track to another track first, then wait disk head comes to the

specific sector. The disk head might have to move as far as the radius of the platter

in order to move to the right track. And even on the right track, the disk head might

have to wait as long as half disk rotation. Thus, the efficiency of random access on

hard disk drives is relatively low compared with sequential access.

Today, the price of a common hard disk is very cheap. A hard disk of one Terabytes

(TB) now sold on market less than 200 dollars. Capacity is very redundant for a hard

disk. Typically, a hard disk could enough for a common user. The main limit of a hard

disk drive is due to its mechanical nature. It’s access time is relatively slow especially

compared with CPU. With Moores Law, the microprocessors improved dramatically,

they become smaller, denser and more powerful. From 1970 to 2005, the functions

that a CPU could perform is increased over 40% per year on average, the clock rate

is increased over 30% per year on average. While the hard disk drive, with capacity

increased by 1000 times from 1985 to 1995, its access speed is improved by 2 times.

In the 1980, the average SRAM access time would take 0.3 CPU cycles, the average

DRAM access time would take 0.37 CPU cycles. While the average hard disk seek

time is 87000 CPU cycles. In 2000 year, the average SRAM access time would take

1.25 CPU cycles, the average DRAM access time would take 37.5 CPU cycles, while

the average hard disk seek time is 5000000 CPU cycles. From this point of view, the

hard disks in 1980 are even more than 57 times faster than their descendant in 2000.

Right now, for a typical 500 GB Seagate hard disk with a 7200 RPM, its average

latency is 4.17 ms, seek time is 11ms, however, its internal I/O data transfer speed

has around 150MB/s. Although the access time of hard disk is relatively slow, the

hard disk has a relatively high throughput in its sequential access. If we can use

www.manaraa.com

23

the hard disk drive in a smart way, the computer system could have a relatively

good performance even if we use a device much slower than DRAM. Most of existing

technologies about optimizing hard disk drives access performance are all making use

of its high throughput sequential access.

3.2 Linux Swap Management for Hard Disks

When operating system comes into a situation that has a lot of swapping opera-

tions, the operating system needs to wait a page has been successfully wrtten in to

the swap device before its next execution and the operating system might need to

read the data from the swap devices back to the operating system when programs

future demanding on it. To minimize the waiting time for the I/O completion, the

Linux kernel has done a lot of special designs for hard disk drives as its swap devices

based on the simple observation that the sequential access on hard disk drives are

much faster than its random access.

When the Linux operating system plan to reclaim memory page, it will free a

lot of memory pages in a short time, that is, the kernel will try to swap out a large

number of memory pages in a short time. In order to try to minimize the I/O time to

store these pages on the swapping devices and the disk seek time to find these pages

when reading them back, the linux operating system tries to store all these pages in

a contiguous free page slots.

There are two simple methods to store the swap out pages on the swap devices:

• Always tries to search a free page slot from the beginning of the swap area. With

this strategy, the average swapping out operations time might be increased as

free page slots might be scatter far away from each other. But if the swap area

is not used too much, it might have a benefit of low swapping in operation time

as the disk head don’t have to move too far away.

www.manaraa.com

24

• Always tries to search a free page slot from the last allocated free page slot of

the swap area. With this strategy, the average swap in operations’ time might

increase as the page slots that the operating system want to read into memory

might be scatted far away from each other. However, usually, the operating

could find a contiguous free page slots easily without having to move disk head

in a large range.

To take advantage of both strategies, the Linux operating system chooses to use

a hybrid strategy. The Linux operating system will always try to search a free page

slot from the last allocated page slot until one of the following conditions reaches:

• It comes to the end of a swap area. This strategy tries to make as many as page

slots are allocated in the same swap area.

• There are SWAPFILE CLUSTER (typically is 256) free page slots were allo-

cated since last restart to the beginning of the swap area. This strategy tries

to make pages are not scatted too far away from each other but also take ad-

vantage the high efficiency of allocating free page slots from the last allocated

page slot strategy.

If there is only one swap area that has the highest priority and it has free page

slots, the operating system will always try to allocate free page slots from this swap

area. If there are more than one swap area with the same priority, the operating

system will try to allocate free page slots in a round robin fashion from each swap

area that has the same priority. If there are several swap devices which are all hard

disks, the swapping could get a relative high parallel performance.

Also, when the operating system tries to swap in the swapped out pages on the

swap devices, it will try to read some contiguous page slots (typically 8, including the

www.manaraa.com

25

requested one) together. This prefetching will read up to 8 contiguous pages from the

requested page, stop prefeching when meet a free or defective page slot, or already

read 8 pages. This strategy takes advantage of the good sequential read performance

of hard disks. If the prefetching pages will be used in near future, it saves additional

swap in operations. If the prefetching pages will not be used in the future, actually,

it might add more swap in and swap out operations to the system. Typically, as the

swap devices contain free page slots and bad page slots, the prefetching mechanism

usually could not read 8 pages together making prefetching less efficient.

3.3 Characteristics of SSD

Right now, the primary secondary storage is flash memory in the form of solid

state drives. Hard disk drives are still the primary secondary storage due to its huge

capacity and cheap price per unit. But solid state drives are replacing hard disk drives

in areas like portable electronics where physical medium size, speed and durability

are more important than capacity and price.

A solid state drive is a data storage device consists of flash memory and integrated

circuit to store data permanently. There are mainly two kinds of flash memories,

NOR and NAND. NOR flash memory, which was designed as a more economical

and efficient rewritable ROM to store code than EPROM (Erasable Programmable

Read Only Memory) and EEPROM (Electrically Erasable Programmable Read Only

Memory), could support random access in bytes and write operations are relatively

slow as it was expecting has much more read operation than write operation. NAND

flash memory, which was designed as a more economical and efficient memory to

replace current hard disk drives, has a much more dense capacity and only allows

access in unit of pages. Solid state drives in the market right now are NAND flash

memory based [14].

www.manaraa.com

26

There are two types NAND flash memory, Singled Level Cell (SLC) NAND and

Multi Level Cell (MLC) NAND. Each cell in a SCL flash memory could only store

one bit while each cell in MLC could store two bits and more. Compared with the life

expectation, SLC NAND is usually much longer than MLC NAND, while the price

of SLC is much more expensive. Considering the price and capacity, most low end

and middle end solid state drives are using MLC NAND to produce a high price per

unit storage medium, while the high end solid state drives tends to use SLC NAND.

Solid state drives use an electronic interface to compatible with traditional block

input/output (I/O) hard disk drives. For most applications, computing equipments

could use it as a storage device replacing hard disk drives directly. Solid state drives

do not use any moving mechanical parts, which makes it distinguish from traditional

mechanical storage medium such as hard disk drives, floppy disks. Because of the

mechanical moving head in the hard disk drives, the average latency and average seek

time in the hard disk drives are relative large. Compared with them, solid state drives

have much lower access time and latency to a block, higher sequential and random

throughput, especially the random access. While the price of solid state drives are

continuing decrease, the price of solid state drives are still much more expensive than

hard disk drives.

In a NAND solid state drive, the flash memory consists of a number of chips, each

consists of a number of planes. Each plane typically consists of thousands of blocks

and some registers as a buffer. Each block typically contains a number of pages,

such as 64 pages, 128 pages. Each page contains a data part typically of size 2KB

or 4KB and a metadata part which contains the error check information and other

information.

A flash block could not be overwriting in place. Instead, it needs first erase a

flash block before the over write. Before erase a block, flash memory needs first copy

www.manaraa.com

27

the useful data into other pages. A block typically of size between 4KB and 128KB

while a page on a flash typically of size from 512B to 2KB. Thus the erase operation

is a very slow operation, often an order of magnitude slower than a common write

operation. Each flash memory block has a limited erase cycles. Typically, a MLC flash

memory has about 10 thousand erase cycles, while a SLC flash memory has about

100 thousand erase cycles. After that, the flash block has been worn out and the

cell can no longer store data reliably, the bit error would be extremely once the flash

memory block erasure limit is exceeded. Usually, flash memory chip manufacturers

will allocate extra flash memory to replace the wear out blocks.

In flash memory, data is written in unit as pages. However, data on the chip

can only be erased at the unit of block while each block contains a large number of

pages. Some of the pages in the block might no longer need and can be discarded

while some of the pages in the block contain useful data and needs to be read from

the pages and written into another pages before erase. This process is named garbage

collection. A solid state drive will not perform garbage collection until its utilized

capacity has reached some threshold. After that threshold, garbage collection will

happen time and time with new data written in solid state drive. Each solid state

drive employ some kind of garbage collection while they might be different between

each other depends on manufacturers. Garbage collection contributes a lot of write

amplification in the solid state drive.

Typically, most workloads in real world would exhibit some kind of locality in

their access pattern. Some parts of the data would be access much more frequently

than other parts of the data, for example, metadata information in the file system. If

some blocks are programmed and erased much more frequent than other blocks, then

this block would be easily wear out which made the solid state drive ending its life

time early. To cope with this problem, many solid state drive manufacturers adopt

www.manaraa.com

28

a mechanism named wear leveling, aim to make writes to each block in the flash as

even as possible. In ideal case, this mechanism would make every block in the solid

state drive to its maximum life time so as the flash maximum its lifetime. However,

the wear leveling process itself needs to move the data which are not changing into

other blocks so that those data which are changing more frequently could be written

those blocks which are not using that frequently. This is serious write amplification

for solid state drive and could reduce the life time of solid state drive.

Over provisioning is the capacity difference between the physical capacity of a

flash memory actually it has and the logical capacity which the users are able to use.

Typically, there are three levels of over provisioning in the flash memory:

• The first level of over provisioning comes from computation. Typically, an

electronic storage like solid state drive uses 230 bytes to represent one GB while

the hard disks and solid state drive vendors uses 109 bytes to represent one GB.

There is 7.37% (= (230 − 109)/109) difference between these two values which

is not taken into the total over provisioning number.

• The second level of over provisioning comes from the manufacturers. Typically,

there is a difference between the physical capacity and the actual available space

to the users. For example, for a 128GB physical capacity solid state drive, the

manufacturers might report is as a 100GB, 120GB or 128GB solid state drive.

• The third level of over provisioning comes from the users configuration. Typ-

ically, the solid state drive manufacturers allow users to set some additional

spaces on solid state drive for over provisioning.

Over provisioning does take away additional spaces from users, but it helps to

reduce write amplifications during garbage collection, wear-leveling which in fact

increases solid state drive life endurance and helps improve performance.

www.manaraa.com

29

3.4 Related Work on Reducing Writes to SSD

There are numerous works in the literature concerned with various aspects of

solid state drives, including designs of its internal address mapping, wear leveling,

and garbage collection. In this section, we briefly review the most closely related

efforts in reducing write cycles in the use of solid state drive for virtual memory, and

in the integration of solid state drive and hard disk for storage systems.

In the FlashVM system, solid state drive is used as dedicated swap space for

page swapping for its greater cost-effectiveness than adding DRAM [39]. To reduce

writes to the solid state drive, FlashVM does the following optimizations. It checks

the contents of candidate swap pages and does not swap them out if they are all

zeros. During swapping in, it will check whether the requested data is all zero. If

the requested page is a zero page, it will allocate a zero page in applications’ address

space. Also, it uses a stride prefetching with the existing prefetching strategy. First

using the Linux existing prefetching strategy to read pages on swap devices, then read

the pages on the swap devices in a stride way. To reduce unnecessary write traffic

to solid state dives, it prioritizes the younger clean pages to be reclaimed before old

dirty pages in the system. During scanning pages for reclaim, the FlashVM will skip

some dirty pages with a certain probability. The best skip rate of dirty pages depends

on applications. For applications consist of read mostly, this strategy will save a lot

of writes traffic to solid state drives. While for applications consist of write mostly,

this policy will increase more page fault as younger clean pages need be evicted in

the future. To cope with this issue, FlashVM detects the write rate of applications.

If write rate is high, the skipping rate will be low, otherwise, the skipping rate would

be high. Flash VM also merge discard on the solid state drives to amortize the erase

cost.

In another work using solid state drive as swap space, SSDAlloc, data for swapping

www.manaraa.com

30

is managed at object granularity rather than at page granularity, where objects may

be much smaller then the page size [12]. Objects are defined by programmers via

the solid state drive alloc() API for dynamically allocating memory. Objects are all

cached in a memory buffer which is managed in an LRU way that has the benefit of

fast access and small cache be used for store more objects. A page buffer is used to

temporarily buffer the materialized pages which are materialized in a on demand way.

This page buffer is implemented via mprotect, managed in a FIFO (First In, First

Out) way. For those page evicted from the page buffer are converted into objects.

If a page evicted from the page buffer, the only cost is rematerialized the page into

memory again. SSDAlloc manages objects on solid state dirves in a hash table, uses

an object pool allocator with different obejct sizes, track the access patterns of the

objects for exploiting temporal locality in the replacement of the objects.

Mogul et al. propose to reduce writes to non-volatile memory (NVM), such as

flash used with DRAM in a hybrid memory [33]. They consider pages used by user

process and file system buffering as candidates move to the NVM, and place pages

with large time-to-next-write (TTNW) on the NVM. Specifically, they consider code

pages of process are good candidates to be moved to NVM while stack pages and

shared pages between processes are not good choices. Pages of file types are good

candidates to be moved to NVM as they are good indicators of estimating time-to-

next-write (ETTNW) and many of them might be read only which is a good sign for

solid state drives while pages from a temporary file are bad candidates. They also

using TTNW model on file names, page history and some special large applications

such as databases.

Ko et al., recognizing that current OS swapping strategies are designed for hard

disk and can cause excessive block copies and erasures on solid state drive if it is

used as swap space [28]. They put swapped out pages in a log structure, when a

www.manaraa.com

31

new write added at the end of log, an old page in the log would be invalidated. This

could help fully make use of the fixed I/O bandwidth and prevents the read and

write operations interfere with each other on solid state drive. A garbage collector

will collect the obsolete data left in the log in the background when not much I/O

operations on the solid state drives. During swapping in operations, they will read

pages in a block-aligned manner in order to reduce garbage collection cost as garbage

collection cost would be large if just partial of the block is invalidated and also might

slow down the garbage collection process.

Because solid state drive is still used as a swap device in addition to hard disk in our

proposed HybridSwap system, the optimizations of the use of solid state drive in the

above works are complementary or supplemental to our effort to improve solid state

drive lifetime. In some of the works the Linux virtual memory prefetching strategy

is tuned to match solid state drive’s characteristics to improve swapping efficiency,

such as allowing non-sequential prefetching and realigning prefetching scope with solid

state drive block boundaries [39, 28]. In contrast, HybridSwap coordinates prefetching

over the solid state drive and hard disk to hide disk access latency.

As an accelerator for hard disk, solid state drive has been used buffer cache be-

tween main memory and the hard disk and exploits workloads’ locality for data

caching [5, 37]. In SieveStore, they make extensive experiments reveals that although

highly skew property across all servers, 1% of the most accessed blocks account for

a huge fraction of total accesses. Then, SieveStore tries to find who are the most

popular 1% blocks and put them in a solid state drive cache to make an cost effective

storage system.

Another use of hard disk and solid state drives is forming a hybrid storage device

with hard disks and solid state drives in parallel such that frequently accessed data is

stored on the solid state drive [15, 36]. In Combo Drive, they use one static optimizer

www.manaraa.com

32

to move files according to their file types instead of their actual file access, always

executable files and program libraries who has a expectation of frequent access to

the solid state drives while put other types file to the hard disk drives. Also, they

use one dynamic optimizer to move files according to their access pattern, moving

files consist of only random access to the solid state drives while putting other access

pattern files to the hard disk drives. In Hystor, they identify the blocks that may

result in long latencies and semantically critical blocks, put them in solid state drives

to have a fast accesses performance in the future by monitoring I/O access online

using frequency/request size as the metric.

A major effort in these works using solid state drives as hard disks buffer cache

for optimized performance and improved solid state drive lifetime is in dynamic iden-

tification of randomly-read blocks and caching them on, or migrating them to, the

solid state drive. In principle, HybridSwap has a similar goal of directing sequen-

tial page access to the disk. However, unlike accessing file data in a storage system,

HybridSwap manages the swapping of virtual memory pages and has different op-

portunities and challenges. First, the placement of swapped-out pages on the swap

space is determined by the swapping system rather than the file system. For contin-

uously swapped-out pages HybridSwap can usually manage to sequentially write to

the disk. There is an opportunity to improve the efficiency of reading from the disk

in resolving page faults by placing the pages on the disk in an order consistent with

their anticipated future read (or page fault) sequence. To this end, HybridSwap pre-

dicts future read sequences at the time of swapping out pages. Second, because data

in a file system is structured, information is available to assist in the prediction of

access patterns; for example, metadata and small files are more likely to be randomly

accessed. Virtual memory pages lack such information and their access patterns can

be expensive to detect. Third, swap space can be more frequently accessed than files

www.manaraa.com

33

because it is mapped into process address space, and data migration strategies used in

works concerned with hybrid disks adapting to changing access patterns are usually

not efficient in this scenario. To meet these challenges, HybridSwap incorporates new

and effective methods for tracking access patterns and the laying out of swap pages

in the swap space.

In the domain of file I/O, there are two recent works in which the hard disk

is explicitly used to reduce writes to the solid state drive. To allow disk to be a

write cache for access to the solid state drive, Soundararajan et al. analyzed file I/O

traces in the desktop and server environments and found that there is significant

write locality—most writes are on a small percentage of file blocks and writes to a

block are concentrated in a short time window. Based on this observation they cache

these blocks on the disk during its write period and migrate them to the solid state

drive when the blocks start to be read [22]. In contrast, swap pages do not have such

locality because a page’s access immediately following a swap-out, if ever, must be a

read (swapping in). Therefore HybridSwap must take into account the efficiency of

reading pages from the disk. The second work, I-CASH, makes the assumption that

writes to a file block usually do not significantly change its contents, i.e., that the

difference in content (the delta) is usually small [38]. The soild state drives will store

most changed seldom blocks and mostly serve for reads, while the hard disks store the

deltas between the currently accessed data and their corresponding copy on the solid

state drives. To have a high read efficiency, they use a high speed compression method

to compress the deltas and put them on the hard disks in a sequential way to make use

the high I/O performance of hard disks. However, for virtual memory access, there

is not sufficient evidence to support the assumption that the deltas are consistently

small. In addition, the on-line computation required for producing the deltas and

recovering the original pages with deltas could heavily burden the CPU. In contrast,

www.manaraa.com

34

HybridSwap achieves high read efficiency from the disk by forming sequential read

patterns to exploit high disk throughput.

To provision QoS assurance for programs running in virtual memory, the common

practice is to prevent the memory regions of performance-sensitive programs from

swapping, either enforced by the kernel [13] or facilitated with application-level paging

techniques [25]. In the HPC environment swapping (or virtual memory) is often

disabled (or not supported) to ensure predictable and efficient execution of parallel

programs on a large cluster [42]. While HybridSwap advocates the use of the hard

disk along with solid state drive as a swapping device, its integrated QoS assurance

mechanism is used as a safety mechanism to prevent excessive performance loss in

the effort to reduce wear on flash.

www.manaraa.com

35

Chapter 4

Design and Implementation

When a combination of solid state drive and hard disk is used to host swap space as

part of virtual memory, the performance goal is to efficiently resolve page faults, i.e. to

read pages from the swap space quickly. While HybridSwap is proposed to achieve the

reduction of writes to solid state drive, an equally important goal is high efficiency for

reading swapped pages. To achieve these goals, HybridSwap is designed to carefully

select appropriate pages to be swapped to the disk and to schedule prefetching of

swapped-out pages back into memory. To this end, we need to integrate spatial

locality with the traditional consideration of temporal locality in the selection of

pages for swapping, evaluate access spatial locality, and schedule the swapping of

pages in and out.

4.1 Integration of Locality

Because swap space is on a device slower than DRAM, the temporal locality in

page access is exploited by retaining the most frequently accessed pages in memory.

For this purpose, the operating system buffers physical pages that have been mapped

to the virtual memory in the system page cache and tracks their access history. A

replacement policy is used to select pages with the weakest temporal locality as tar-

gets for swapping out. Consecutively identified target pages are swapped together

and are highly likely to be contiguously written in a region of the swap space. How-

ever, there is no assurance that these pages will be swapped in together in the future.

Furthermore, the replacement policy may not identify pages that were contiguously

swapped in as candidates for contiguously swapping out with sequential writes. Ig-

noring spatial locality can increase swap-in latency and page-fault penalty, especially

www.manaraa.com

36

when the swap space is on disk. In the context of HybridSwap, spatial locality refers

to the phenomenon that contiguous pages on the swap space are the targets of page

faults occurring together and can be swapped in together. While swap-in efficiency is

critical for the effectiveness of the hard disk as a swapping medium, spatial locality

must be integrated with temporal locality when HybridSwap swaps pages out to the

hard disk. To this end, among pages of weak temporal locality, we identify candidate

pages with potentially strong spatial locality and evaluate their locality according to

their access history. Only sequences of pages with weak temporal locality and strong

spatial locality will be swapped to the hard disk, and those of weak spatial locality

will be swapped to the solid state drive.

In the LRU (least recently used) replacement algorithm, one of the more commonly

used replacement algorithms in operating systems, it is relatively easy to recognize

sequences of candidate pages. HybridSwap is prototyped in the Linux 2.6 kernel that

adopts an LRU variant similar to 2Q replacement [27]. Here the kernel pages are

grouped into two LRU lists, the active list and the inactive list. As their names

suggest the active list is used to store recently or frequently accessed pages, and the

inactive list is used to store pages that have not been accessed for some time. A

faulted-in page is placed at the tail of the active list, and pages at the tail of the

inactive list are considered to have weak temporal locality and are candidates for

replacement. A page is promoted from the inactive list into the active list if it is

accessed, and demoted to the inactive list if it is not accessed for some time. Pages

that have been accessed together when they are added into the inactive list will stay

close in the lists. However, a sequence of pages in the lists may belong to different

processes, as a page fault of one process leads to scheduling of another process and

consecutive page faults are more likely to originate from different processes. Such

a sequence is unlikely to repeat itself because the involved processes usually do not

www.manaraa.com

37

coordinate their relative progress. Therefore, HybridSwap groups pages at the tail

of the inactive list according to their process IDs, and then evaluates their spatial

locality within each process, as shown Figure 4.1.

Inactive List

Pages
belong to
process A

Pages
belong to
process B

Pages
belong to
process D

Pages
belong to
process C

Group Pages at the Tail of Inactive List

Figure 4.1: An example of grouping pages at the tail of inactive list.

4.2 Evaluation of Spatial Locality of Page Sequences

For a sequence of pages at the tail of the inactive list, we need to predict the

probability of them having page faults and being swapped in together if they are

swapped out. As the basis of this prediction, we check the page access history to

determine whether the same access sequence has appeared before. The challenge is

how to efficiently detect and record page accesses. One option is to use mprotect() to

protect the pages of each process to detect page access when an mprotect-triggered

page fault occurs. This option can be overly expensive because the system may not

always be frequently page swapping, and not all pages are constantly involved in the

swapping. Instead, HybridSwap only records a page access when a page fault occurs

on the page. In this way, there is almost zero time cost for detecting page accesses,

and the space overhead for recording access is proportional to number of faulted

pages. Assuming that programs have relatively stable access patterns and that the

www.manaraa.com

38

replacement policy can consistently identify pages of weak locality for swapping, the

access history recorded in this manner is sufficient to evaluate the spatial locality of

the sequence of pages to be swapped out.

When a sequence of pages is swapped out together and sequentially written to the

disk they will be swapped in together—or sequentially prefetched into the memory—

in response to a fault on any page in the sequence. However, sequential disk access

does not necessarily indicate efficient swapping, because for efficiency the prefetched

pages must be used to resolve future page faults before being evicted from memory.

In other words, the spatial locality for a sequence of prefetched pages is characterized

by how close in time they are used to resolve page faults. Quantitatively, the locality

is measured by the time gap between any two fault occurrences on the pages in the

sequence. Ideally, it is not larger than the lifetime of a swapped-in page, or the time

period from its swap-in to its subsequent swap-out.

In evaluating locality, there are three goals in effectively recording page access.

First, the space overhead should be small. Second, the recorded history must allow

an algorithm to determine whether a page sequence has appeared before in the O(1)

time. Third, the history should be able to predict whether future page faults on the

pages in the sequence would occur together. To achieve these goals, for each process

we build a table, its access table, that is the same as the process’s page table, except

that (1) only pages that have had faults are in the table; and (2) the leaf node of

the tree-like table, equivalent to the PTE (page table entry) in the Linux page table,

is used to store the times when page faults occur on its corresponding page. We set

a global clock that is incremented whenever a page fault occurs in the system. For

the page associated with the fault we record the current clock time in the page’s

access table entry. We record up to two such times associated with the page’s two

most recent page faults. By using page fault count for the timing, rather than using

www.manaraa.com

39

real system time, we can assess the space demand on the system buffer as each page

fault requires an additional page space. If there are two page faults separated by a

time period with few or no page faults in between, they are considered to be close in

our timing metric as they would probably be evicted together without separated in

the LRU list by other faulted pages. In contrast, the wall-clock time can not serve

this purpose in this context. We also record a page’s most recent swap-in time to

obtain the page’s most recent in-memory lifetime. When a page is swapped out, we

compute the difference between the current clock time and its swap-in time to obtain

the page’s most recent lifetime. We calculate a moving average of the lifetimes of any

swapped pages for the system and use it as a threshold to evaluate a page sequence’s

spatial locality. The average Lk is updated after serving the kth request by

Lk = (1 − α) ∗ Lk−1 + α ∗ Lifetime.

Here Lifetime is the lifetime calculated for the most recently swapped out page, and α

is between 0 and 1 and is used to control how quickly history information decays. In

our reported experiments α = 2/3 so that more recent lifetimes are better represented.

Other experiments show that system performance is not sensitive to this parameter

over a large range. In the prototype, we use 32 bits to represent a time. When the

clock reaches to its maximum value it is reset to zero. (The temporary disruption

that could be caused by this reset would only occur if a process swapped 16TB of

data using 4KB pages—if this were an issue a 64 bit value could be used.) The space

overhead for storing timestamps is then 32 bits/4KB, or 1B/1KB, a very modest 0.1%

of the virtual memory involved in page faults.

Only sequences of high spatial locality are eligible to be swapped to the hard disk.

When there is a candidate sequence of pages selected from the tail of the inactive

www.manaraa.com

40

list that belong to the same process, we use the process’s access table to determine

whether the sequence has sufficiently high spatial locality. We first retrieve the pages’

access times from the table. For each access time of a page, we calculate the difference

between it and the access times of other pages. If there exists another page whose

access times differ by more than the system’s current average lifetime, or there are

anonymous pages in the sequence that do not have history access times, the sequence’s

spatial locality is deemed to be low.

4.3 Scheduling Page Swapping

There are three steps for swapping out pages in HybridSwap: selecting a candidate

sequence, evaluating its spatial locality, and determining swapping destinations. For

each swap, we select a process and remove all of its pages from the last N pages at

the tail of the inactive list, where N is a parameter representing the tradeoff between

temporal locality and spatial locality. A smaller N will ensure that only truly least

recently used pages are swapped but provides less opportunity for producing long page

sequences and may results in more page faults in near future as memory is not enough.

In contrast, overly large N can benefit disk efficiency but may lead to the replacement

of recently used pages and results in more page faults as hot pages has been swapped

out. Fortunately, because the list can be relatively long with today’s memory sizes,

N can be sufficiently large for high disk efficiency without compromising the system’s

temporal locality. In current Linux kernels, eight pages are replaced in each swap.

Previous research has suggested that disk access latency can be well amortized with

requests of 256KB or larger [40], so N is set to p∗128KB/s, where p is the number of

processes with pages in the tail area of the inactive list and s is the page size (4KB).

Sequence selection is rotated among the processes for fair use of memory.

Spatial locality is evaluated for each selected candidate sequence. If the result

indicates weak locality the sequence is swapped to solid state drive. Otherwise, in

www.manaraa.com

41

principle the sequence will be sent to the disk. A sequence that is written to the disk

is recorded in the corresponding process’s access table using a linked list embedded

in the leaf nodes of the table recording their virtual addresses. When a fault occurs

on a page in the sequence the first page of the sequence will be read in synchronously,

then the other pages of the sequence will be asynchronously prefetched from the disk

into memory.

SSD Segment

Sequence Illustration

Sequence

Disk Segment

SSD Hard Disk

Figure 4.2: Illustration of SSD Segment and Disk Segment.

While asynchronous prefetching of pages is expected to allow their page faults

to be resolved in memory, one deficiency in the swapping-in operation is the long

access latency experienced by the read of the first page. To hide this latency, for a

sequence intended for swapping to the disk, we examine its pages’ history access times

recorded in the access table to see whether they had been accessed in a consistent

order. If so, we order them in a list of ascending access times and divide them into two

segments. The first segment, called the SSD segment, will be swapped out to the solid

state drive, and the second one containing pages of longer access times, called the disk

segment, will be swapped out to the disk, as shown in Figure 4.2. If there is a fault on

the page in the solid state drive segment, both the solid state drive and disk segments

www.manaraa.com

42

are immediately prefetched. The objective of this scheduling is to hide the long disk

access latency behind the time for the process to do computation on the data supplied

by the solid state drive. To determine the length of the solid state drive segment, we

need to compare the data consumption rate of the process to the disk access latency.

To achieve this, we track the time periods between any two intermediate page faults

for each process, and calculate their moving average Tcompt with a formula similar to

the one used for calculating system average lifetime. We also track the access latencies

associated with each disk swap-in, and calculate their moving average Tdisk−latency , also

with a similar formula. If Tdisk−latency/Tcompt is smaller than the sequence size then it

is the solid state drive segment size. Otherwise, the entire sequence will be swapped

to the solid state drive. In this way overly-short sequences will be swapped to the

solid state drive even if they have strong spatial locality. In HybridSwap we do not

need to explicitly evaluate the accuracy of the prefetching: inaccurate prefetching is

caused by changing access pattern, and inconsistent access patterns are recorded in

the access table, which will automatically cancel disk swapping of the involved pages.

4.4 Building QoS Assurance into HybridSwap

HybridSwap is designed to carefully select pages for swapping to the disk to attain

a good balance between reducing solid state drive writes and retaining the perfor-

mance advantage of solid state drive. At the same time, HybridSwap allows a user to

specify the prioritization of these two goals to influence how the tradeoff is made for

specific programs. We use the ratio of program stall time due to page faults and its

run time as the input. This ratio is a mandatory upper bound on the cost of swapping

on a program’s run time. To implement this requirement, HybridSwap needs to know

the current ratio, which is the ratio of current total stall time and the elapsed time

of the program’s execution.

www.manaraa.com

43

If no QoS requirement is specified for a program’s execution, its page swapping will

be managed in the default manner as previously described. Otherwise, HybridSwap

tracks the ratio of the current ratio and the required ratio. If this ratio, which we

call the shift ratio, is larger than 1 we need to shift subsequent sequences towards the

solid state drive when pages are swapped out. Initially a sequence’s solid state drive

segment is obtained as described in Section 4.3. If the shift ratio is larger than 1,

the solid state drive segment size is increased by this ratio (up to the entire sequence

size). If the shift ratio is still larger than 1 with almost all recent pages swapped to

the solid state drive, the sequence is shifted towards memory in a similar manner.

For pages to be kept in memory, we simply skip those pages when selecting pages for

swapping out. If the shift ratio is consistently smaller than 1 by a certain margin,

HybridSwap will shift sequences towards solid state drive or the disk. For effectively

determining the placement of swapped-out sequences according to the required ratio,

HybridSwap initially places the pages on the solid state drive when a program starts

to run.

www.manaraa.com

44

Chapter 5

Evaluation and Analysis

HybridSwap is implemented primarily in the Linux kernel (version 2.6.35.7) and

supports a user-level QoS tool. Most code modifications are in the memory manage-

ment system, for example instrumentation in the handle pte fault() function to record

both major and minor page faults in the access tables, and in the shrink page list()

function to select sequences for spatial-locality evaluation and swapping out. At the

user level, we wrote a script to read user-specified QoS requirement from the user’s

command line. This tool is only needed for users requesting specific bounds on the

overhead due to page swapping during program execution. In total about 1200 lines

of code were modified or added.

In this section we experimentally answer the following questions about HybridSwap.

• Can the number of I/O writes to SSD be significantly reduced by using the hard

disk?

• Can HybridSwap achieve performance comparable to SSD alone?

• Is HybridSwap effective for workloads with mixed memory access patterns or

for very heavy workloads?

• What is the overhead of HybridSwap as implemented in the Linux kernel?

5.1 Experimental Setup

We conducted experiments on a Dell Poweredge server with an Intel 2.4GHz dual-

core processor with 4GB DRAM. Except where otherwise stated, we limited the

memory available for running processes to 1GB to intensify the swapping activities

www.manaraa.com

45

RAM

SSD

HybridSwap

Hard Disk

Figure 5.1: An illustration of HybridSwap configuration.

RAM

SSD

SSD-Swap

Figure 5.2: An illustration of SSD-Swap configuration.

and reveal performance difference between different swapping strategies. The server is

configured with a 160GB hard disk (WDC WD1602 ABKS). We used two types of SSD

devices in the experiments. One is Intel SSDSA2M080G2GC, referred to as Intel SSD

hereafter, and the other one is OCZ-ONYX, referred to as OCZ SSD hereafter. Their

performance characteristics are summarized in Table 5.1. Except where explicitly

stated the OCZ SSD is the one used in the experiments. Native Command Queuing

(NCQ) is enabled on the disk and SSDs. Per standard practice we used CFQ [2]

www.manaraa.com

46

RAM

SSD

RAID-Swap

Hard Disk

Figure 5.3: An illustration of RAID-Swap configuration.

(Completely Fair Queuing) which optimize the order of the I/O requests it receives

as the disk scheduler and NOOP [7] which keeps the order of I/O requests as the order

it receives as the SSD scheduler. In the experiments, we compared HybridSwap (as

shown in Figure 5.1) with the swapping configuration using only an SSD, referred to

as SSD-Swap (as shown in Figure 5.2). Linux supports swapping on multiple storage

devices with a pre-configured swapping traffic distribution. To compare HybridSwap

with a less-optimized hybrid swapping system, we use an SSD and a hard disk with

1:1 distribution as a Linux-managed swapping space, referred to as RAID-Swap (as

shown in Figure 5.3). In RAID-Swap, the swap space is equally striped on the SSD

and the disk, leading to a data layout similar to RAID 0.

5.2 Benchmarks

We used four real-world memory-intensive benchmarks with differing memory ac-

cess patterns to form the workloads: Memcached, ImageMagick, matrix inverse, and

correlation computation.

Memcached provides a high-performance distributed caching infrastructure to

form an in-memory key-value store [8]. We set up a Memcached client to issue re-

www.manaraa.com

47

Intel SSD OCZ SSD Hard Disk

Capacity (GB) 80 32 160
Sequential Read (MB/s) 238 140 85
Sequential Write (MB/s) 125 110 70
Random Read (MB/s) 25 34 4
Random Write (MB/s) 10 4 0.8

Table 5.1: Capacities and sequential/random read/write throughput of the two SSDs
and the hard disk. The measurements are for 4KB requests. Random access through-
put indicates access latency, which is relatively very large for the hard disk. In con-
trast, the hard disk’s sequential throughput is not much lower than the SSDs’.

quests for storing (put) and retrieving (get) data items at the Memcached server with

different dispatch rates and key distributions.

ImageMagick (Image for short) is a software package providing command-line

functionality for image editing [6]. In the experiments we enlarge a file of 17MB by

200%, and at the same time we convert the file from its original JPG format to PNG

format.

Matrix Inverse (Matrix for short) is a scientific computation program from AL-

GLIB, an open-source and cross-platform numerical analysis and data processing

library [1]. The implementation of matrix inverse in ALGLIB employs several opti-

mizations, such as efficient use of CPU cache, to achieve maximal performance. The

input matrix size is 4096*4096 in the experiments.

Correlation Computation (CC for short) is also from ALGLIB. It finds the sta-

tistical dependence between two matrices by calculating their correlation coefficient.

The input matrix size is 4096*4096 in the experiments.

5.3 Reduction of SSD Writes

A major goal of HybridSwap is to select appropriate pages for swapping to the

hard disk to reduce writes to the SSD and so improve its lifetime. We measured the

number of page writes for each of the four benchmarks. For each benchmark we ran

www.manaraa.com

48

Memcached (5) Image (2) CC (6) Matrix (7)

SSD-Swap 269,618 450,352 911,148 471,201
HybridSwap 170,316 273,477 712,660 396,291

Reduction Ratio 37% 40% 22% 16%

Table 5.2: Number of writes to the SSD with and without use of the hard disk
managed by HybridSwap. The number of concurrent instances is given in parentheses.

multiple concurrent instances to increase the aggregate memory demand and create

more complicated dynamic memory access patterns. Table 5.2 lists the total number

of page writes on the SSD for each of the four benchmarks when only SSD is used

and when both SSD and hard disk are used and managed by HybridSwap.

For Memcached we ran five concurrent instances. To simulate the use of the

caching service by applications running on the client, we assume each instance has

its own set of data items to constantly put and get in a certain time period before

it operates on another set of items. The size of an item is uniformly distributed

between 64KB and 256KB. The total item size is 1.95GB, for 0.95GB data on the

swap space and the rest in the 1GB main memory. Memcached is pre-populated with

the put operations. After that the client simultaneously issues queries to different data

sets in different Memcached instances, with each set having 500 queries at a time.

HybridSwap detects relatively strong spatial locality in the memory accesses when

the same set of data items is accessed together from time to time. It reduces writes

to the SSD by 37% by swapping some sets of data items to the disk. Because only

sets of data items of strong locality are placed on the disk, and the sequential disk

bandwidth is comparable to the non-sequential bandwidth of the SSD, we achieved

only 0.8% slowdown in terms of the number of packets (or queries) transferred between

Memcached clients and server per second as shown in Table 5.3.

We ran two concurrent instances of Image, which has a sequential memory access

www.manaraa.com

49

Memcached (packets/s) Image (s) CC (s) Matrix (s)

SSD-Swap 16,734 108 431 864
HybridSwap 16,597 103 400 860
Improv. Ratio -0.8% 4.6% 7.1% 0.5%

Table 5.3: Performance of the benchmarks when either SSD-Swap or HybridSwap is
used. Memcached’s performance is in terms of throughput (packets/s), and the other
benchmarks use run time (s) as the performance metric.

pattern and requires 2.4GB memory. An interesting observation about the benchmark

is that not only is the number of I/O writes reduced by 40%, but the run time of the

benchmark is also reduced by 4.6% (Table 5.3). This is because aggressive prefetching

enabled by HybridSwap based on sequences on the hard disk reduces the total number

of major faults from 53,557 to 37,929 (29% reduction), and transforms the remaining

faults to minor faults (hits on the prefetched pages). Another reason is that the SSD

and hard disk can concurrently serve requests with higher aggregate I/O bandwidth

than SSD alone.

We ran six instances of CC, which requires 3.4GB memory. The results show that

22% of writes to SSD are eliminated by HybridSwap due to its detection of access

sequences with strong locality and their efficient swapping to disk. However, we

found that compared to the Image benchmark there is a larger percentage of writes

to the SSD. To gain an understanding of this we collected the sequences generated

during the executions of the two benchmarks. Figure 5.4 shows the cumulative

distributions of their sequence sizes. We observe that for CC and Image, 87% and

75% of the sequences have fewer than 30 pages, respectively, that is, CC has more

shorter sequences. With short sequences, even if they are qualified to be swapped to

the disk, pages in their SSD segments can be a large proportion of the sequences and

are stored on the SSD. With more pages on the SSD the relative performance of CC

www.manaraa.com

50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

(%
)

Sequence Size (pages)

CC
Image

Figure 5.4: Cumulative distributions of sequence sizes for the Image and CC bench-
marks.

is greater than that of Image (Table 5.3).

Because the Matrix benchmark has small memory demand (260MB) we ran seven

instances to stress the swap devices. Although it produces a significant number of

short sequences, HybridSwap can still exploit the detected locality to carry out disk-

based swapping without compromising performance. Writes to SSD are reduced by

16%. Our measurements show that the swapped-out data is distributed on the SSD

and on the hard disk at a ratio of 5:1 when the swap space reaches its maximal size.

In the experiments presented in the next several sections we select only one or a

subset of the benchmarks that is most appropriate for revealing specific aspects of

HybridSwap.

5.4 Effectiveness of Sequence-based Prefetching

HybridSwap records access history to identify sequences of strong locality for

swapping to disk and to enable effective prefetching afterward. Lacking information

with which to predict page faults, Linux conservatively sets a limit of eight pages

for each prefetch. In contrast, HybridSwap can prefetch as many as 64 pages in one

swapping-in. In this section we compare the number of major page faults associated

www.manaraa.com

51

 0

 15000

 30000

 45000

 60000

 75000

 90000

 105000

 120000

SSD-Swap
RAID-Swap

HybridSwap

N
um

be
r o

f M
aj

or
 P

ag
e

Fa
ul

ts

110,694

92,317

56,497

Figure 5.5: Number of major faults when running the CC benchmark with SSD-
Swap, RAID-Swap, and HybridSwap. For SSD-Swap and RAID-Swap we use the
Linux default read-ahead policy.

with HybridSwap, SSD-Swap, and RAID-Swap when running CC. As shown in Fig-

ure 5.5, HybridSwap reduces page faults by 49% and 39% compared to SSD-Swap

and RAID-Swap, respectively. By exploiting consistent page access patterns such as

row-based, column-based, and diagonal-based access, HybridSwap can detect a large

number of long sequences of strong spatial locality. There are two factors contribut-

ing to HybridSwap’s small major-page-fault count. One is the high I/O efficiency

in its page swap-in, which helps make pages available in memory before they are

requested to resolve faults. The other is the accuracy of its prefetching, which makes

the swapped-in pages become the targets of minor page faults. Using only one device,

SSD-Swap has the most major faults.

5.5 Effect of Memory Size

Memory size is inversely correlated to the amount of data swapped out of the

memory, so we can vary the memory size to influence the swapping intensity and

correspondingly affect the relative performance advantages or disadvantages of Hy-

bridSwap. In the following experiments we ran Memcached with different amounts of

www.manaraa.com

52

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000
 26000

512 1024 1536 2048

A
vg

. N
um

be
r o

f Q
ue

rie
s

pe
r S

ec
on

d

RAM Memory Size (MB)

SSD-Swap
RAID-Swap
HybridSwap

Figure 5.6: Memcached throughput in terms of average number of queries served per
second with different memory sizes and different swapping schemes.

memory to determine whether the program’s relative throughput is substantially af-

fected by a swapping-intensive workload. We increase the memory size from 512MB,

1024MB, 1536MB, to 2048MB. As shown in Figure 5.6, when memory size is small the

throughput of Memcached in terms of average number of queries served per second

is higher for SSD-Swap than that for HybridSwap. However, the loss in through-

put is small—only 5.5%—and is accompanied by a 40% reduction of writes to SSD.

Compared to RAID-Swap, HybridSwap’s throughput is higher by 22% because Linux

does not form sequences that enable effective prefetching. As the memory size in-

creases more accesses can be served in memory, resulting in correspondingly increasing

throughput. When the memory size is 2GB, 98% of the programs’ working set is in

memory and there is little difference between the throughputs of the three schemes.

5.6 Insights into HybridSwap Performance

In this section we investigate how the performance of HybridSwap relative to that

of SSD-Swap changes with differing types of SSD devices, and why the performance

of HybridSwap is much higher than that of RAID-Swap even though both use the

same combination of SSD and hard disk. We ran Image and measured its run time

www.manaraa.com

53

SSD-Swap RAID-Swap HybridSwap

OCZ 108/53557 144/64160 103/37929
Intel 104/58459 143/62457 104/35218

Table 5.4: Run time/number of major faults during the executions of the Image
benchmark with different swapping schemes and different types of SSDs.

and total number of writes to SSD for the two types of SSDs using each of the three

swapping schemes, as shown in Table 5.4. Table 5.1 shows that the difference in

throughput of the two SSD devices ranges from approximately 15% to 150%, and

generally the Intel SSD has higher performance. However, the relative performance

shown in both program run time and number of major page faults is minimally

affected by the SSD types. The reason is that in HybridSwap, SSD is mainly used

for random access and the hard disk is used to serve sequential access. While a

significant portion of requests are identified as sequential and served on the disk, the

role of SSD on HybridSwap’s performance is important. We expect that an SSD with

much higher performance would place HybridSwap at a disadvantageous position in

terms of program run time. However, such an SSD would be much more expensive

so the need to extend its lifetime by using HybridSwap could be higher.

Table 5.4 also shows that HybridSwap consistently and significantly outperforms

RAID-Swap by reducing both writes to SSD and run time of the benchmark for both

types of SSD devices. Apparently this performance advantage comes from the differ-

ent usages of the hard disk. Figure 5.7(a) and Figure 5.7(b) show access addresses

on the hard disk in terms of disk LBN (Logic Block Number) when HybridSwap or

RAID-Swap is used, respectively, in a sampled execution period of 0.2 seconds. The

lines connecting consecutively accessed blocks are indicative of disk head movement.

When RAID-Swap is used the disk head frequently moves in a disk area whose LBNs

range from 30 to 700,000 indicating low I/O efficiency and high page-fault service

www.manaraa.com

54

time. When Hybrid-Swap is used pages in the same sequence are written and read

sequentially. This shows that HybridSwap’s performance, which is comparable to

that of SSD-Swap and is much higher than that of RAID-Swap, should be mainly

attributed to its improved disk efficiency.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 40.26 40.29 40.32 40.35 40.38 40.41 40.44

Lo
gi

ca
l B

lo
ck

 N
um

be
r (

LB
N

)

Time (Seconds)

(a)

HybridSwap

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 40.26 40.29 40.32 40.35 40.38 40.41 40.44

Lo
gi

ca
l B

lo
ck

 N
um

be
r (

LB
N

)

Time (Seconds)

(b)

RAID-Swap

Figure 5.7: Disk addresses, in terms LBNs of data access on the hard disk in a sampled
execution period with HybridSwap (a) and with RAID-Swap (b).

5.7 Multiple-program Concurrency

Concurrently running multiple programs could potentially lead to swapping of a

large number of random pages and compromised disk efficiency. In this section we

use the Matrix benchmark to evaluate the performance of HybridSwap with varying

concurrency from 4, 5, 6, to 7 program instances.

www.manaraa.com

55

With four concurrent instances there are only 0.2GB of data to be swapped out

and the I/O time spent on faults accounts for only 1.7% of total execution time. As

the concurrency increases the total number of page faults significantly increases by

32 times (Figure 5.8(a)), and I/O time for swapping increases by 4.5 times (Fig-

ure 5.8(b)). From the figures we make three observations: (1) When the system has

a swapping-intensive workload, RAID-Swap should not be used as it produces many

more major page faults and spends much more I/O time on swapping; (2) SSD-Swap

cannot sustain performance for workloads with highly intensive swapping because the

bandwidth of one SSD can be overwhelmed; and, (3) HybridSwap retains its advan-

tage in the small number of major faults and low swapping time even with very high

concurrency. This suggests that a heavy workload does not prevent HybridSwap from

forming sequences and efficiently using the disk for swapping.

When HybridSwap is used 49% of page faults are eliminated by effective swap-page

prefetching based on faults history. Because pages are read and written sequentially

on the disk and from the two devices in parallel, HybridSwap achieves even better

performance than SSD-Swap. Total swap I/O time is reduced by 20% and 43%

compared to SSD-Swap and RAID-Swap, respectively.

5.8 Bounding the Page Fault Penalty

While swapping data to the storage devices, especially hard disk, can severely

extend a program’s run time, HybridSwap provides a means to bound the page fault

penalty on run time. To demonstrate this QoS control we run three instances of

Image. Figure 5.9(a) shows that the ratio of the aggregate page fault penalty and the

run time, as a function of elapsed run time, without any QoS requirement. Because

no instance has a bound on the ratio, all three make best effort in the use of virtual

memory and their respective ratio’s curves are nearly identical. Initially the ratios rise

as each builds up its respective working set and page faults increase as more of their

www.manaraa.com

56

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000
 60000

4 5 6 7
N

um
be

r
of

 M
aj

or
 P

ag
e

F
au

lts

Concurrency

(a)

SSD-Swap
RAID-Swap
HybridSwap

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

4 5 6 7

T
ot

al
 I/

O
 T

im
e

fo
r

S
w

ap
pi

ng
 (

S
)

Concurrency

(b)

Figure 5.8: Major faults (a) and total I/O time (b) spent on the swapping in the
running of the Matrix benchmark with varying degrees of concurrency.

working sets are swapped. In the curves there are segments that are not continuous

because we only sample the ratio at each swap-out to reduce the overhead. We next

attempt to set a bound on the ratio for one or more of the instances to prioritize

their performance. Because the memory size is limited, which is smaller than one

instance’s working set, an instance prioritized with a tighter bound would move some

or all of the working set that would be placed on the hard disk without a QoS

requirement to the SSD. Figure 5.9(b) shows the ratios of the instances when we set

a bound of 70% on the ratio of Image instance 1. By enforcing the QoS requirement

www.manaraa.com

57

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 50 90 130 170

P
ag

e
F

au
lt

P
en

al
ty

 /
R

un
tim

e

Runtime (Seconds)

 (a) HybridSwap

Image 1
Image 2
Image 3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 60 110 160 210 260 310 360

P
ag

e
F

au
lt

P
en

al
ty

 /
R

un
tim

e

Runtime (Seconds)

 (b) HybridSwap with Qos Assurance

Qos Requirement for Image 1

Image 1
Image 2
Image 3

Figure 5.9: Running three instances of the Image benchmark with HybridSwap when
a QoS requirement in terms of a bound on the ratio of the aggregate page fault penalty
and (a) run time is not specified, or (b) is specified.

HybridSwap does keep this instance’s ratio below the bound. Concurrently, the other

two instances’ ratios approach 90% and execution times are significantly extended.

We note that Instance 1’s execution time is reduced by only 10% and a tighter bound

on the instance may not be realized because the use of the hard disk has already been

highly optimized in HybridSwap and the relative performance advantage of the SSD

is limited. A larger range for the QoS control to be effective would require a faster

SSD (or SSD RAID) or larger memory. We note that the QoS mechanism could also

www.manaraa.com

58

be useful for ameliorating the effects of spikes in swapping intensity, wherein at high

swapping intensity traffic would be preferentially shifted to the SSD.

5.9 Runtime Overhead Analysis

The run time overhead of HybridSwap has two major components: the time for

checking the access tables to determine the spatial locality of candidate sequences and

the time for searching access tables for sequences to be prefetched when major page

faults occur. Even though these operations are on critical I/O time, the time overhead

is inconsequential because the time for operations on the in-memory data structure is

at least two orders of magnitude less than disk latency and even SSD latency. In this

section we quantitatively analyze the overhead of HybridSwap. Instead of directly

measuring the overhead we measure the increase in program run time attributable

to the sequence-related operations. More specifically, we measure the run times of

three selected benchmarks (Image, CC, and Matrix) with RAID-Swap and compare

them to the run times with RAID-Swap with the function module for these operations

added. In the latter case, we ensure that the operations be carried out as they do in

HybridSwap. The results are shown in Figure 5.10. The run time overhead is less

than 1% on average for all the benchmarks.

www.manaraa.com

59

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Image CC Matrix

R
un

ni
ng

 T
im

e
(S

ec
on

ds
) With Trail Management

W/O Trail Management

Figure 5.10: Run times of the Image, CC, and Matrix benchmarks with and without
sequences-related operations invoked.

www.manaraa.com

60

Chapter 6

Conclusions and Future Work

In this chapter, we first make a summary of this thesis, then we discuss the

limitations in the design and evaluation of the proposed solutions. In the end, we

suggest several directions for future work.

6.1 Contributions

We propose using the hard disk in addition to solid state drive to support virtual

memory for hosting its swap space subject to two constraints. First, significant write

traffic to the swap space should be directed to the hard disk to improve solid state

drive’s lifetime. Second, the performance of the hybrid swapping system should not

be significantly less than that of a solid state drive-only system.

In our design of such a system we ensure that (1) temporal locality is effectively ex-

ploited so that the memory be fully utilized; (2) spatial locality is effectively exploited

so that the disk does not become a performance bottleneck; (3) the swapping of pages

to the solid state drive and to the hard disk is scheduled such that the solid state

drive is used only to serve page faults when it can achieve a performance advantage

over the disk; and, (4) the use of solid state drive and hard disk is coordinated so that

the throughput potential of hard disk is exploited but its access-latency disadvantage

is avoided.

We have implemented the proposed HybridSwap scheme in Linux for synergis-

tic coupling of solid state drive and hard disk to serve as a memory extension. We

experimentally compared HybridSwap to a solid state drive-only solution, and to a

solid state drive/disk array, as swap devices in Linux using representative applica-

tions including key-value store for in-memory caching, image processing, and scientific

www.manaraa.com

61

computations. Our evaluation shows that HybridSwap can reduce writes to the solid

state drive by up to 40% with the system’s performance comparable to that with pure

solid state drive swapping.

6.2 Limitations and Future Work

Although this work has shown promising results with the proposed techniques

to reduce solid state drive writes without comprosing performance, there are some

limitations in this work and will be addressed in future work.

First, this work only considers about processes without the presence of large shared

memory segments. In the current design, they simply put shared anonymous pages

into solid state drives. For applications like database system, there might be lots

of shared anonymous pages and our design needs to handle the case. Second, the

benchmark of this work concentrates on scientific applications such as matrix inverse

and correlation computation. We need to evaluate with some benchmarks in other

application domains.

In future, first, we will take shared anonymous pages into our design to make our

design could handle more general cases and test it with corresponding benchmarks.

Second, we will evaluate our design with more common applications such as Word,

video player. Third, we will incorporate the existing work of virtual memory making

use of solid state drive only into our design such as FlashVM, SSDAlloc to find out

how much improvement we can get together.

www.manaraa.com

62

REFERENCES

[1] Alglib, a cross-platform numerical analysis and data processing library, 2012.

http://www.alglib.net/.

[2] J. Axboe. Completely fair queueing (cfq) scheduler, 2010. http://en.

wikipedia.org/wiki/CFQ.

[3] T. Coughlin and E. Grochowski Hard Disk Drive Capital Equipment and

Technology Report, 2012. http://www.tomcoughlin.com/Techpapers/2012%

20Capital%20Equipment%20Report%20Brochure%20021112.pdf.

[4] R. ARPACI-DUSSEAU Paging: Introduction http://pages.cs.wisc.edu/

~remzi/OSFEP/vm-paging.pdf.

[5] M. Srinivasan and P. Saab. Flashcache: a general purpose writeback block

cache for linux, 2011. https://github.com/facebook/flashcache.

[6] Imagemagick, 2012. http://www.imagemagick.org/script/index.php.

[7] J. Axboe. Noop scheduler, 2010. http://en.wikipedia.org/wiki/Noop.

[8] Memcached, 2011. http:/memcached.org/.

[9] V. Vleck, Thomas. Multics General Info and FAQ, 2012 http://www.

multicians.org/general.html.

[10] Belady, L.A. A study of replacement algo-rithms for virtual storage computers

IBM Sys-tems J. 5, 1966

[11] D. Bovet, M. Cesati. Understanding the Linux Kernel, Third Edition. Oreilly,

2005.

http://www.alglib.net/
http://en.wikipedia.org/wiki/CFQ
http://en.wikipedia.org/wiki/CFQ
http://www.tomcoughlin.com/Techpapers/2012%20Capital%20Equipment%20Report%20Brochure%20021112.pdf
http://www.tomcoughlin.com/Techpapers/2012%20Capital%20Equipment%20Report%20Brochure%20021112.pdf
http://pages.cs.wisc.edu/~remzi/OSFEP/vm-paging.pdf
http://pages.cs.wisc.edu/~remzi/OSFEP/vm-paging.pdf
https://github.com/facebook/flashcache
http://www.imagemagick.org/script/index.php
http://en.wikipedia.org/wiki/Noop
http:/memcached.org/
http://www.multicians.org/general.html
http://www.multicians.org/general.html

www.manaraa.com

63

[12] A. Badam and V. S. Pai. Ssdalloc: Hybrid ssd/ram memory management

made easy. In the 8th USENIX Symposium on Networked Systems Design and

Implementation. USENIX, 2011.

[13] A. T. Campbell. A quality of service architecture. In Ph.D Thesis, Computing

Department, Lancaster University, 1996.

[14] F. Chen, D. Koufaty, and X. Zhang. Understanding Intrinsic Characteristics

and System Implications of Flash Memory based Solid State Drives. ACM SIG-

METRICS Conference on Measurement and Modeling of Computer Systems,

2009.

[15] F. Chen, D. Koufaty, and X. Zhang. Hystor: Making the best use of solid

state drives in high performance storage systems. International Conference on

Supercomputing, 2011.

[16] Chase, J. S., H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and

protection in a single-address-space operating system ACM TOCS 12, 1994

[17] Peter J. Denning. BEFORE MEMORY WAS VIRTUAL, 1996 http://cs.

gmu.edu/cne/pjd/PUBS/bvm.pdf.

[18] Englander, Irv The architecture of computer hardware and systems software.

Wiley, 2003

[19] Mel Gorman. Understanding the Linux Virtual Memory Manager. Prentice

Hall, 2004

[20] M. M. Franceschini and L. Lastras-Montano. Improving read performance of

phase change memories via write cancellation and write pausing. The 16th

http://cs.gmu.edu/cne/pjd/PUBS/bvm.pdf
http://cs.gmu.edu/cne/pjd/PUBS/bvm.pdf

www.manaraa.com

64

IEEE International Symposium on High Performance Computer Architecture,

2010.

[21] R. F. Freitas and W. W. Wilcke. Storage-class memory: The next storage

system technology. IBM Journal of Research and Development, 52, 2008.

[22] M. B. G. Soundararajan, V. Prabhakaran and T. Wobber. Extending ssd life-

times with disk-based write caches. In the 8th USENIX Conference on File and

Storage Technologies. USENIX, 2010.

[23] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel,

and J. K. Wolf. Characterizing flash memory: Anomalies, observations and

applications. In the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture. IEEE/ACM, 2009.

[24] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future of nand flash mem-

ory. In the USENIX Conference on File and Storage Technologies. USENIX,

2012.

[25] S. M. Hand. Self-paging in the nemesis operating system. In the third symposium

on Operating systems design and implementation, 1999.

[26] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write amplifi-

cation analysis in flash-based solid state drives. In SYSTOR’09: The Israeli

Experimental Systems Conference, 2009.

[27] T. Johnson and D. Shasha. 2q: A low overhead high performance buffer man-

agement replacement algorithm. In International Conference on Very Large

Data Bases, 1994.

www.manaraa.com

65

[28] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh. A new linux swap system for

flash memory storage devices. In International Conference on Computational

Sciences and its Applications, 2008.

[29] S. Jiang and X. Zhang. Lirs: An efficient low inter-reference recency set replace-

ment policy to improve buffer cache performance. In International Conference

on Measurement and Modeling of Computer Systems (SIGMETRICS’02), 2002.

[30] T. Johnson and D. Shasha. 2q: A low overhead high performance buffer man-

agement replacement algorithm. In International Conference on Very Large

Data Bases(VLDB’94), 1994.

[31] Y. Smaragdakis and S. Kaplan. EELRU: Simple and Effective Adaptive Page

Replacement. In International Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS’99), 1999.

[32] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi,

E. Goodness, and L. R. Nevill. Bit error rate in nand flash memories. IEEE

International Reliability Physics Symposium, 2008.

[33] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating system support

for nvm+dram hybrid main memory. In the 12th conference on Hot topics in

operating systems, 2009.

[34] L. Ray. SSD Flash drives enter the enterprise. Silverton Consulting, 2008

[35] M.Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali.

Enhancing lifetime and security of pcm-based main memory with start-gap

wear levelings. In the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture. IEEE/ACM, 2009.

www.manaraa.com

66

[36] H. Payer, M. A. Sanvido, Z. Bandic, and C. M. Kirsch. Combo drive: Optimiz-

ing cost and performance in a heterogeneous storage device. the 1st Workshop

on integrating solid-state memory into the storage hierarchy, 2009.

[37] T. Pritchett and M. Thottethodi. Sievestore: A highly-selective, ensembel-level

disk cache for cost-performance. In Proceeding of 37th International Symposium

on Computer Architecture. ACM, 2010.

[38] J. Ren and Q. Yang. I-cash:intelligently coupled array of ssd and hdd. The 17th

IEEE Symposium on High Performance Computer Architecture, 2011.

[39] M. Saxena and M. M. Swift. Flashvm: Virtual memory management on flash. In

Proceeding of the 2010 USENIX Annual Technical Conference. USENIX, 2010.

[40] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A. Ailamaki,

C. Faloutsos, and G. R. Ganger. On multidimensional data and modern disks.

In the 4th USENIX Conference on File and Storage Technologies. USENIX,

2005.

[41] Tanenbaum Distributed Operating Systems Prentice-Hall, 1995

[42] C. Wang, S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Eagelmann. Nvmal-

loc: Exposing an aggregate ssd store as a memory partition in extreme-scale

machines. 26th IEEE International Parallel and Distributed Processing Sympo-

sium, 2012.

[43] William Stallings Operating Systems: Internals and Design Principles Prentice

Hall, 2008

www.manaraa.com

67

[44] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient

main memory using phase change memory technology. The 36th International

Symposium on Computer Architecture, 2009.

www.manaraa.com

68

ABSTRACT

SYNERGISTICALLY COUPLING OF SOLID STATE DRIVES AND
HARD DISKS FOR QOS-AWARE VIRTUAL MEMORY

by

KE LIU

May 2013

Advisor:

Major:

Degree:

Dr. Song Jiang

Computer Engineering

Master of Science

With significant advantages in capacity, power consumption, and price, solid state

disk (SSD) has good potential to be employed as an extension of dynamic random-

access memory, such that applications with large working sets could run efficiently

on a modestly configured system. While initial results reported in recent works show

promising prospects for this use of SSD by incorporating it into the management of

virtual memory, frequent writes from write-intensive programs could quickly wear out

SSD, making the idea less practical.

This thesis makes four contributions towards solving this issue. First, we propose a

scheme, HybridSwap, that integrates a hard disk with an SSD for virtual memory man-

agement, synergistically achieving the advantages of both. In addition, HybridSwap

can constrain performance loss caused by swapping according to user-specified QoS

requirements.

Second, We develop an efficient algorithm to record memory access history and

to identify page access sequences and evaluate their locality. Using a history of page

access patterns HybridSwap dynamically creates an out-of-memory virtual memory

page layout on the swap space spanning the SSD and hard disk such that random

www.manaraa.com

69

reads are served by SSD and sequential reads are asynchronously served by the hard

disk with high efficiency.

Third, we build a QoS-assurance mechanism into HybridSwap to demonstrate the

flexibility of the system in bounding the performance penalty due to swapping. It

allows users to specify a bound on the program stall time due to page faults as a

percentage of the program’s total run time.

Forth, we have implemented HybridSwap in a recent Linux kernel, version 2.6.35.7.

Our evaluation with representative benchmarks, such as Memcached for key-value

store, and scientific programs from the ALGLIB cross-platform numerical analysis

and data processing library, shows that the number of writes to SSD can be reduced

by 40% with the system’s performance comparable to that with pure SSD swapping,

and can satisfy a swapping-related QoS requirement as long as the I/O resource is

sufficient.

www.manaraa.com

70

AUTOBIOGRAPHICAL STATEMENT

KE LIU

Ke Liu is a graduate student of Department of Electrical and Computer Engineer-

ing at Wayne State University. He received his B.S. degree in computer science and

technology from National University of Defense and Technology, China in 2008, and

M.S. degree in computer science and technology from Beijing University of Posts and

Telecommunications, China in 2011.

His research interests include operating system, file and storage system, virtual

memory, parallel I/O and MPI-IO library . He has published 2 paper, one in IEEE

International Symposium on Performance Analysis of Systems and Software (2013,

first author) and the other in IEEE International Parallel and Distributed Processing

Symposium (2013, second author).

	Wayne State University
	DigitalCommons@WayneState
	1-1-2013

	Synergistically Coupling Of Solid State Drives And Hard Disks For Qos-Aware Virtual Memory
	Ke Liu
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Chapter Introduction
	Using Solid State Drive as Swapping Device
	Thesis Contributions
	Thesis Organization

	Chapter Background on Virtual Memory
	Virtual Memory Management
	Memory Segmentation
	Paging

	Paged Virtual Memory
	Page Replacement
	Page Management in the Linux Kernel

	Swapping
	Swap Area
	Page Slot Identifier
	Swap Cache

	Chapter Related Work
	Characteristics of Hard Disks
	Linux Swap Management for Hard Disks
	Characteristics of SSD
	Related Work on Reducing Writes to SSD

	Chapter Design and Implementation
	Integration of Locality
	Evaluation of Spatial Locality of Page Sequences
	Scheduling Page Swapping
	Building QoS Assurance into HybridSwap

	Chapter Evaluation and Analysis
	Experimental Setup
	Benchmarks
	Reduction of SSD Writes
	Effectiveness of Sequence-based Prefetching
	Effect of Memory Size
	Insights into HybridSwap Performance
	Multiple-program Concurrency
	Bounding the Page Fault Penalty
	Runtime Overhead Analysis

	Chapter Conclusions and Future Work
	Contributions
	Limitations and Future Work

	References
	Abstract
	Autobiographical Statement

